OCS Math 2 Priority Standards

NUMBER \& QUANTITY

NUMBER \& QUANTITY	
NC.M2.N-CN. 1	Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form a $+b i$ where a and b are real numbers.
ALGEBRA	
NC.M2.A-SSE. 1	Interpret expressions that represent a quantity in terms of its context. a. Identify and interpret parts of a quadratic, square root, inverse variation, or right triangle trigonometric expression, including terms, factors, coefficients, radicands, and exponents. b. Interpret quadratic and square root expressions made of multiple parts as a combination of single entities to give meaning in terms of a context.
NC.M2.A-APR. 1	Extend the understanding that operations with polynomials are comparable to operations with integers by adding, subtracting, and multiplying polynomials.
NC.M2.A-CED. 3	Create systems of linear, quadratic, square root, and inverse variation equations to model situations in context.
NC.M2.A-REI. 4	Solve for all solutions of quadratic equations in one variable. a. Understand that the quadratic formula is the generalization of solving $a x^{2}+b x+c$ by using the process of completing the square. b. Explain when quadratic equations will have non-real solutions and express complex solutions as $a \pm b i$ for real numbers a and b.
NC.M2.A-REI. 11	Extend the understanding that the x-coordinates of the points where the graphs of two square root and/or inverse variation equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$ and approximate solutions using graphing technology or successive approximations with a table of values.
FUNCTIONS	
NC.M2.F-IF. 9	Compare key features of two functions (linear, quadratic, square root, or inverse variation functions) each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).
NC.M2.F-BF. 3	Understand the effects of the graphical and tabular representations of a linear, quadratic, square root, and inverse variation function f with $k \cdot f(x), f(x)+k, f(x+k)$ for specific values of k (both positive and negative).
GEOMETRY	
NC.M2.G-CO. 5	Given a geometric figure and a rigid motion, find the image of the figure. Given a geometric figure and its image, specify a rigid motion or sequence of rigid motions that will transform the pre-image to its image.
NC.M2.G-CO. 9	Prove theorems about lines and angles and use them to prove relationships in geometric figures including: - Vertical angles are congruent. - When a transversal crosses parallel lines, alternate interior angles are congruent. - When a transversal crosses parallel lines, corresponding angles are congruent. - Points are on a perpendicular bisector of a line segment if and only if they are equidistant from the endpoints of the segment. - Use congruent triangles to justify why the bisector of an angle is equidistant from the sides of the angle.
NC.M2.G-CO. 10	Prove theorems about triangles and use them to prove relationships in geometric figures including: - The sum of the measures of the interior angles of a triangle is 180°. - An exterior angle of a triangle is equal to the sum of its remote interior angles. - The base angles of an isosceles triangle are congruent. - The segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length.

NC.M2.G-SRT.4	Use similarity to solve problems and to prove theorems about triangles. Use theorems about triangles to prove relationships in geometric figures. - A line parallel to one side of a triangle divides the other two sides proportionally and its converse.
NC.M2.G-SRT.8	Use trigo Pythagorean Theorem triangles in terms of a context.
NC.M2.G-SRT.12	Develop properties of special right triangles (45-45-90 and 30-60-90) and use them to solve problems.
NC.M2.S-CP.5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
NC.M2.S-CP.8	Apply the general Multiplication Rule $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$ and interpret the answer in context. Include the case where A and B are independent: $P(A$ and $B)=P(A) P(B)$.

